Don't "Raise Awareness"

In an early analysis of efforts to convince people to act more pro-environmentally, Burgess et al. present the following flowchart on how people's minds change:

It seems pretty straightforward. It's also completely wrong.

In a later metasurvey, Kollmuss and Agyeman say:
These models from the early 1970s were soon proven to be wrong. Research showed that in most cases, increases in knowledge and awareness did not lead to pro-environmental behavior. Yet today, most environmental Non-governmental Organisations (NGOs) still base their communication campaigns and strategies on the simplistic assumption that more knowledge will lead to more enlightened behavior. 
Problems go even further. Kollmuss and Agyeman add that "quantitative research has shown that there is a discrepancy between attitude and behavior." Wong and Sheth agree, saying that the relationship between beliefs and behavior is generally found to be "low and nonsignificant."

25% of Americans tell pollsters that "Animals deserve the same rights as people," yet only 2% are vegan. Unless a quarter of Americans believe it's ok to torture humans to death for their flesh, that's a pretty big gap between beliefs and behavior.

Henry Spira, one of the most effective animal advocates of all time, noted this problem in his list of tips for advocates when he disparaged "raising awareness". It's very easy to convince ourselves that we're building "mindshare" even if people's behaviors don't change, but without the explicit measurement of the sort that EAA's Top Charities do we're probably just building castles in the air.

Kill the Young People

Suppose you were forced to choose between killing someone today, and killing someone a century from now. Which would you choose?

To be clear: the two people are exactly the same - equally happy, healthy, etc. And the effects on others are the same, and there is no uncertainty involved. The only difference between the two murders is when they occur.

It seems hard to give a justification for why one is better than the other, and in the landmark Stern Review on Climate Change the eponymous Nicholas Stern said as much. In his interrogation by Parliament, he stated that to choose one over the other is to "discriminate between people by date of birth," a position that is "extremely hard to defend".

There is a lot of controversy about whether he made the right decision, mostly motivated by the fact that even slightly different decisions on how we "discount" the future can cause huge differences in how we respond to threats which will kill people in the future, like climate change.

A remarkable proof by Peter Diamond shows that, under some reasonable assumptions, we should indeed "discriminate by date of birth," and choose to kill the person a century from now.

Diamond's Proof

The full proof (and several others) can be found in his paper The Evaluation of Infinite Utility Streams, but I'll present a simplified version here.

First, some notation. We denote welfare over time as a list, e.g. $(1,2,3)$ indicates that at time 1 all sentient persons have utility 1, and time 2 they have utility 2 and so forth. Because time is infinite, these lists are infinitely long. We denote infinite repetition with "rep", e.g. $1_{rep}$ is the list $(1,1,1,\dots)$. These lists are given variable names - I use $u,v$ for finite lists and $X,Y$ for infinite lists - and they are compared with the standard inequality symbols ($>,\geq$).

There are four assumptions:

  1. If $u\geq v$ then $u_{rep} \geq v_{rep}$. I.e. if some finite list of utilities $u$ is better than some other finite list $v$, then repeating $u$ for all of eternity is better than repeating $v$ for all of eternity.
  2. If $u\geq v$ then $(u,X)\geq (v,X)$. I.e. if $u$ is better than $v$, starting off the world with $u$ is better than starting things off with $v$, given that the rest of time is equal.
  3. If $X\geq Y$ then $(u,X)\geq (u,Y)$. I.e. if some infinite state of affairs $X$ is better than $Y$, starting them both off with $u$ won't change that.
  4. If $u$ is the same as $v$ except some people are better off (and no one is worse off), then $u > v$. (This is sometimes known as Pareto efficiency.)
Proof: The proof actually isn't that complicated, but it looks intimidating because the notation is probably unfamiliar.

Suppose, for the sake of contradiction, that $(1,2)_{rep}\geq (2,1)_{rep}$. By (A4), $(2,2,(1,2)_{rep}) > (2,1)_{rep}$ since $(2,2,(1,2)_{rep})$ is the same as $(1,2)_{rep}$, except with people being better off at $t = 1$. By rearrangement, $(2,2,(1,2)_{rep})=(2,(2,1)_{rep})$ and $(2,1)_{rep}=(2,(1,2)_{rep})$ so $(2,(2,1)_{rep}) > (2,(1,2)_{rep})$. But we had assumed that $(1,2)_{rep}\geq (2,1)_{rep}$ which by (A3) means that $(2,(1,2)_{rep}) \geq (2,(2,1)_{rep})$. We've reached a contradiction, meaning that $(1,2)_{rep} < (2,1)_{rep}$.

This means that $(1,2) < (2,1)$, for if the opposite were true, $(1,2)_{rep} \geq (2,1)_{rep}$ by (A1). Therefore, by (A2), $(1,2,X) < (2,1,X)$, meaning that if we could shift happiness from year two to year one, we should.

We should value the happiness of those born earlier more than those born later, and kill the person living a century from now.


My girlfriend pointed out to me that the reason why we interpret this theorem to mean that people born earlier matter more is because we assume time has a beginning but no end. If we assumed the opposite, then people born later would matter more.